首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Exploring the Complexity of Layout Parameters in Tournaments and Semi-Complete Digraphs
  • 本地全文:下载
  • 作者:Florian Barbero ; Christophe Paul ; Michal Pilipczuk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:80
  • 页码:70:1-70:13
  • DOI:10.4230/LIPIcs.ICALP.2017.70
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A simple digraph is semi-complete if for any two of its vertices u and v, at least one of the arcs (u,v) and (v,u) is present. We study the complexity of computing two layout parameters of semi-complete digraphs: cutwidth and optimal linear arrangement (OLA). We prove that: -Both parameters are NP-hard to compute and the known exact and parameterized algorithms for them have essentially optimal running times, assuming the Exponential Time Hypothesis. - The cutwidth parameter admits a quadratic Turing kernel, whereas it does not admit any polynomial kernel unless coNP/poly contains NP. By contrast, OLA admits a linear kernel. These results essentially complete the complexity analysis of computing cutwidth and OLA on semi-complete digraphs. Our techniques can be also used to analyze the sizes of minimal obstructions for having small cutwidth under the induced subdigraph relation.
  • 关键词:cutwidth; OLA; tournament; semi-complete digraph
国家哲学社会科学文献中心版权所有