摘要:We address the behavioral metric-based approximate minimization problem of Markov Chains (MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state MC of minimal distance to the original. By considering as metric the bisimilarity distance of Desharnais at al., we show that optimal approximations always exist; show that the problem can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and NP-hard. Finally, we present an approach inspired by expectation maximization techniques that provides suboptimal solutions. Experiments suggest that our method gives a practical approach that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.