首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the Metric-Based Approximate Minimization of Markov Chains
  • 本地全文:下载
  • 作者:Giovanni Bacci ; Giorgio Bacci ; Kim G. Larsen
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:80
  • 页码:104:1-104:14
  • DOI:10.4230/LIPIcs.ICALP.2017.104
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We address the behavioral metric-based approximate minimization problem of Markov Chains (MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state MC of minimal distance to the original. By considering as metric the bisimilarity distance of Desharnais at al., we show that optimal approximations always exist; show that the problem can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and NP-hard. Finally, we present an approach inspired by expectation maximization techniques that provides suboptimal solutions. Experiments suggest that our method gives a practical approach that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.
  • 关键词:Behavioral distances; Probabilistic Models; Automata Minimization
国家哲学社会科学文献中心版权所有