首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Modified Kernel-based Intuitionistic Fuzzy C-means Clustering Method Using DNA Genetic Algorithm
  • 本地全文:下载
  • 作者:Wenke Zang ; Liyan Ren ; Zhenni Jiang
  • 期刊名称:Journal of Software Engineering
  • 印刷版ISSN:1819-4311
  • 电子版ISSN:2152-0941
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:172-182
  • DOI:10.3923/jse.2017.172.182
  • 出版社:Academic Journals Inc., USA
  • 摘要:Background: Clustering analysis has gained popularity and imprecise methods or their hybrid approaches has attracted many researchers of late. Fuzzy C-means clustering algorithm (FCM) is a method that is frequently used in pattern recognition . Recently, intuitionistic Fuzzy C-means (IFCM) algorithm was introduced and studied by Tripathy and it was found to be superior to all other algorithms in this family. Materials and Methods: This study proposes a modified IFCM method called kernel-based intuitionistic fuzzy C-means (mKIFCM) which is an extension of intuitionistic fuzzy C-means by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. The mKIFCM method combines Atanassov’s Intuitionistic Fuzzy Entropy (IFE) with kernel-based fuzzy C-means and DNA genetic algorithms (DNA-GA) are optimally used simultaneously to choose the parameters of mKIFCM. The entire algorithm procedure is called mKIFCM-DNAGA. Results: The mKIFCM can make use of the advantages of intuitionistic fuzzy sets, kernel functions and DNA-GA in actual clustering problems. Conclusion: The algorithm is evaluated through cluster validity measures. The clustering accuracy of algorithm is investigated by classification datasets with labeled patterns. Experiments on machine learning repository datasets show that the proposed mKIFCM-DNAGA is more efficient than conventional algorithms. The mKIFCM-DNAGA method maintains appreciable performance compared to other methods in terms of pureness ratio.
国家哲学社会科学文献中心版权所有