首页    期刊浏览 2024年07月18日 星期四
登录注册

文章基本信息

  • 标题:Tunable Wide-Angle Tunneling in Graphene-Assisted Frustrated Total Internal Reflection
  • 本地全文:下载
  • 作者:Thang Q. Tran ; Sangjun Lee ; Hyungjun Heo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • DOI:10.1038/srep19975
  • 出版社:Springer Nature
  • 摘要:Electrically tunable permittivity of graphene provides an excellent tool in photonic device design. Many previous works on graphene-based photonic devices relied on variable absorption in graphene, which is naturally small in the optical region, and resonant structures to enhance it. Here we proposed a novel scheme to control evanescent coupling strength by inserting two graphene layers to a frustrated total internal reflection (FTIR) configuration. The resulting structure behaves in a drastically different way from the original FTIR: optical transmission though the structure can be electrically controlled from ~10−5 to ~1 with little dependency on angle of incidence. This unique feature stems from the fact that the permittivity of doped graphene can be close to zero at a certain photon energy. The electrical controllability of evanescent coupling strength can enable novel design of optical devices. As a proof-of-concept, we designed a waveguide-type optical modulator of a novel operation principle: transmission modulation depends on the electrically controlled existence of a guided-mode of the waveguide, not the variation of the ohmic loss of graphene, resulting in a low insertion loss and a small device footprint.
国家哲学社会科学文献中心版权所有