期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2017
卷号:2017
DOI:10.1155/2017/2520301
出版社:Hindawi Publishing Corporation
摘要:The removal of mixed Gaussian-impulse noise plays an important role in many areas, such as remote sensing. However, traditional methods may be unaware of promoting the degree of the sparsity adaptively after decomposing into low rank component and sparse component. In this paper, a new problem formulation with regular spectral -support norm and regular -support norm is proposed. A unified framework is developed to capture the intrinsic sparsity structure of all two components. To address the resulting problem, an efficient minimization scheme within the framework of accelerated proximal gradient is proposed. This scheme is achieved by alternating regular -shrinkage thresholding operator. Experimental comparison with the other state-of-the-art methods demonstrates the efficacy of the proposed method.