首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Prototype Generation Using Self-Organizing Maps for Informativeness-Based Classifier
  • 本地全文:下载
  • 作者:Leandro Juvêncio Moreira ; Leandro A. Silva
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/4263064
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The nearest neighbor is one of the most important and simple procedures for data classification task. The , as it is called, requires only two parameters: the number of and a similarity measure. However, the algorithm has some weaknesses that make it impossible to be used in real problems. Since the algorithm has no model, an exhaustive comparison of the object in classification analysis and all training dataset is necessary. Another weakness is the optimal choice of parameter when the object analyzed is in an overlap region. To mitigate theses negative aspects, in this work, a hybrid algorithm is proposed which uses the Self-Organizing Maps (SOM) artificial neural network and a classifier that uses similarity measure based on information. Since SOM has the properties of vector quantization, it is used as a Prototype Generation approach to select a reduced training dataset for the classification approach based on the nearest neighbor rule with informativeness measure, named NN. The SOMNN combination was exhaustively experimented and the results show that the proposed approach presents important accuracy in databases where the border region does not have the object classes well defined.
国家哲学社会科学文献中心版权所有