首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Novel Measurement Matrix Optimization Approach for Hyperspectral Unmixing
  • 本地全文:下载
  • 作者:Su Xu ; Xiping He
  • 期刊名称:Journal of Control Science and Engineering
  • 印刷版ISSN:1687-5249
  • 电子版ISSN:1687-5257
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/8471024
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Each pixel in the hyperspectral unmixing process is modeled as a linear combination of endmembers, which can be expressed in the form of linear combinations of a number of pure spectral signatures that are known in advance. However, the limitation of Gaussian random variables on its computational complexity or sparsity affects the efficiency and accuracy. This paper proposes a novel approach for the optimization of measurement matrix in compressive sensing (CS) theory for hyperspectral unmixing. Firstly, a new Toeplitz-structured chaotic measurement matrix (TSCMM) is formed by pseudo-random chaotic elements, which can be implemented by a simple hardware; secondly, rank revealing QR factorization with eigenvalue decomposition is presented to speed up the measurement time; finally, orthogonal gradient descent method for measurement matrix optimization is used to achieve optimal incoherence. Experimental results demonstrate that the proposed approach can lead to better CS reconstruction performance with low extra computational cost in hyperspectral unmixing.
国家哲学社会科学文献中心版权所有