摘要:This paper presents an out space branch-and-bound algorithm for solving generalized affine multiplicative programs problem. Firstly, by introducing new variables and constraints, we transform the original problem into an equivalent nonconvex programs problem. Secondly, by utilizing new linear relaxation technique, we establish the linear relaxation programs problem of the equivalent problem. Thirdly, based on the out space partition and the linear relaxation programs problem, we construct an out space branch-and-bound algorithm. Fourthly, to improve the computational efficiency of the algorithm, an out space reduction operation is employed as an accelerating device for deleting a large part of the investigated out space region. Finally, the global convergence of the algorithm is proved, and numerical results demonstrate the feasibility and effectiveness of the proposed algorithm.