首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Quantile Regression for Panel Data: An Empirical Approach for Knowledge Spillovers Endogeneity
  • 本地全文:下载
  • 作者:Luigi Aldieri ; Concetto Paolo Vinci
  • 期刊名称:International Journal of Economics and Finance
  • 印刷版ISSN:1916-971X
  • 电子版ISSN:1916-9728
  • 出版年度:2017
  • 卷号:9
  • 期号:7
  • 页码:106
  • DOI:10.5539/ijef.v9n7p106
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    The aim of this paper is to investigate the extent to which knowledge spillovers effects are sensitive to different levels of innovation. We develop a theoretical model in which the core of spillover effect is showed and then we implement the empirical model to test for the results. In particular, we run the quantile regression for panel data estimator (Baker, Powell, & Smith, 2016), to correct the bias stemming from the endogenous regressors in a panel data sample. The findings identify a significant heterogeneity of technology spillovers across quantiles: the highest value of spillovers is observed at the lowest quartile of innovation distribution. The results might be interpreted to provide some useful implications for industrial policy strategy.

国家哲学社会科学文献中心版权所有