首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Toward Dynamic Load Balancing across OpenMP Thread Teams for Irregular Workloads
  • 本地全文:下载
  • 作者:Xiong Xiao ; Shoichi Hirasawa ; Hiroyuki Takizawa
  • 期刊名称:International Journal of Networking and Computing
  • 印刷版ISSN:2185-2847
  • 出版年度:2017
  • 卷号:7
  • 期号:2
  • 页码:387-404
  • 语种:English
  • 出版社:International Journal of Networking and Computing
  • 摘要:In the field of high performance computing, massively-parallel many-core processors such as Intel Xeon Phi coprocessors are becoming popular because they can significantly accelerate various applications. In order to efficiently parallelize applications for such many-core processors, several high-level programming models have been proposed. The de facto standard programming model mainly for shared-memory parallel processing is OpenMP. For hierarchical parallel processing, OpenMP version 4.0 or later allows programmers to create multiple thread teams. Each thread team contains a bunch of newly-created synchronizable threads. When multiple thread teams are used to execute an application, it is important to have dynamic load balancing across thread teams, since static load balancing easily encounters load imbalance across teams, and thus degrades performance. In this paper, we first motivate our work by clarifying the benefit of using multiple thread teams to execute an irregular workload on a many-core processor. Then, we demonstrate that dynamic load balancing across those thread teams has a potential of significantly improving the performance of irregular workloads on a many-core processor, with considering the scheduling overhead. Although such a dynamic load balancing mechanism has not been provided by the current OpenMP specification, the benefits of dynamic load balancing across thread teams are discussed through experiments using the Intel Xeon Phi coprocessor. We evaluate the performance gain of dynamic load balancing across thread teams using a ray tracing code. The results show that such a dynamic load balancing mechanism can improve the performance by up to 14% compared to static load balancing across teams, with considering scheduling overhead.
  • 其他摘要:In the field of high performance computing, massively-parallel many-core processors such as Intel Xeon Phi coprocessors are becoming popular because they can significantly accelerate various applications. In order to efficiently parallelize applications for such many-core processors, several high-level programming models have been proposed. The de facto standard programming model mainly for shared-memory parallel processing is OpenMP. For hierarchical parallel processing, OpenMP version 4.0 or later allows programmers to create multiple thread teams. Each thread team contains a bunch of newly-created synchronizable threads. When multiple thread teams are used to execute an application, it is important to have dynamic load balancing across thread teams, since static load balancing easily encounters load imbalance across teams, and thus degrades performance. In this paper, we first motivate our work by clarifying the benefit of using multiple thread teams to execute an irregular workload on a many-core processor. Then, we demonstrate that dynamic load balancing across those thread teams has a potential of significantly improving the performance of irregular workloads on a many-core processor, with considering the scheduling overhead. Although such a dynamic load balancing mechanism has not been provided by the current OpenMP specification, the benefits of dynamic load balancing across thread teams are discussed through experiments using the Intel Xeon Phi coprocessor. We evaluate the performance gain of dynamic load balancing across thread teams using a ray tracing code. The results show that such a dynamic load balancing mechanism can improve the performance by up to 14% compared to static load balancing across teams, with considering scheduling overhead.
  • 关键词:OpenMP;Thread team;Load balancing;Irregular workload
国家哲学社会科学文献中心版权所有