首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Estimation and variable selection in generalized partially nonlinear models with nonignorable missing responses
  • 本地全文:下载
  • 作者:Tang, Niansheng ; Tang, Lin
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:1-18
  • DOI:10.4310/SII.2018.v11.n1.a1
  • 语种:English
  • 出版社:International Press
  • 摘要:Based on the local kernel estimation method and propensity score adjustment method, we develop a penalized likelihood approach to simultaneously select covariates and explanatory variables in the considered parametric respondent model, and estimate parameters and nonparametric functions in generalized partially nonlinear models with nonignorable missing responses. An EM algorithm is proposed to evaluate the penalized likelihood estimations of parameters. The $\mathrm{IC}_Q$ criterion is employed to select the optimal penalty parameter. Under some regularity conditions, we show some asymptotic properties of parameter estimators such as oracle property. It can be shown that the proposed local linear kernel estimator of the nonparametric component is an estimator of a least favorable curve. The consistency of the $\mathrm{IC}_Q$-based selection procedure is obtained. Simulation studies are conducted, and a real data set is used to illustrate the proposed methodologies.
  • 关键词:generalized partially nonlinear models; local kernel estimation; nonignorable missing responses; propensity score; variable selection
国家哲学社会科学文献中心版权所有