首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Monotone function estimation in partially linear models
  • 本地全文:下载
  • 作者:Zhang, Yi ; Wang, Shaoli
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:19-29
  • DOI:10.4310/SII.2018.v11.n1.a2
  • 语种:English
  • 出版社:International Press
  • 摘要:A kernel-based method is proposed for the monotone estimation of the nonparametric function component of a partially linear regression model. The estimated monotone function is constructed via a density estimate and numerical inversion. This procedure does not require constrained optimization and hence is fast to compute. Asymptotic normality is established for the proposed monotone function estimator. We apply the proposed method to analyze mammalian eye gene expression data and reveal a complex nonlinear relation within a gene network; we also analyze the German SOEP data using our method and validate the human capital theory.
  • 关键词:asymptotic normality; density estimation; kernel estimation; monotone function; nonparametric function; partially linear models
国家哲学社会科学文献中心版权所有