首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Efficiency enhancement of the ocean thermal energy conversion system with a vapor–vapor ejector
  • 本地全文:下载
  • 作者:Ho-Saeng Lee ; Jung-In Yoon ; Chang-Hyo Son
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2015
  • 卷号:7
  • 期号:3
  • DOI:10.1177/1687814015571036
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:In this article, 20 kW ocean thermal energy conversion with a vapor–vapor ejector is newly proposed. As a vapor–vapor ejector is installed in the system, the pressure difference between the turbine inlet and outlet increases. Therefore, the amount of the working fluid required for the total turbine work of 20 kW is less than when no vapor–vapor ejector is installed. Therefore, installing a vapor–vapor ejector in the system decreases the evaporation capacity and the pump work. The performance analysis considered the outlet pressure of the high-stage turbine, the mass flow ratio of the working fluid at the outlet of a separator just after the high-stage turbine, and the nozzle diameters of the vapor–vapor ejector. As the outlet pressure of high-stage turbine becomes lower, the turbine gross power of high-stage turbine and system efficiency increase although lower outlet pressure of high-stage turbine results in lower ejector performance. Similarly, in terms of mass flow ratio, the highest system efficiency was shown at mass flow ratio of 0.4 at the outlet of a separator just after the high-stage turbine. On the other hand, the performance of the ejector at mass flow ratio of 0.5 at the outlet of a separator was largest. When the nozzle diameters of the vapor–vapor ejector are properly designed, the vapor–vapor ejector shows the highest performance. After the optimization of the operation parameters, system efficiency of the proposed ocean thermal energy conversion power cycle was 2.47%, relatively 15% higher than that of the basic ocean thermal energy conversion power cycle (2.2%).
  • 关键词:Ocean thermal energy conversion; vapor–vapor ejector; performance analysis
国家哲学社会科学文献中心版权所有