摘要:This article studies the precision motion control of a long-stroke reticle stage driven by the permanent magnet linear motor in wafer scanner. A robust sliding-mode control method is proposed for tracking the reference trajectory in the presence of un-modeled dynamics, parametric uncertainty and external disturbances including force ripple, cogging and friction in the controlled system. A modified sliding-mode term based on the variable structure technique for eliminating the tracking error is employed in the proposed control law. The system stability and tracking convergence of the closed-loop control system are guaranteed by Lyapunov theory theoretically. The feasibility and effectiveness of the proposed method are demonstrated by comparative experiments on a linear motion testbed. The experimental results show that better tracking performance can be achieved by the proposed method compared with the conventional proportional–integral–derivative method and it can be considered as a possible alternative in the precision motion control system.
关键词:Lithography; wafer scanner; sliding-mode control; variable structure; precision motion control