首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Numerical investigations of hydrodynamic performance of hydrofoils with leading-edge protuberances
  • 本地全文:下载
  • 作者:Chang Cai ; Zhigang Zuo ; Shuhong Liu
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2015
  • 卷号:7
  • 期号:7
  • DOI:10.1177/1687814015592088
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:Leading-edge protuberances on airfoils or hydrofoils have been considered as a viable passive method for flow separation control recently. In this article, the hydrodynamic performance of a NACA 634-021 (baseline) foil and two modified foils with leading-edge protuberances was numerically investigated using the Spalart–Allmaras turbulence model. It was found that modified foils performed worse than the baseline foil at pre-stall angles, while the lift coefficients at high angles of attack of the modified foils were increased. Both the deterioration of pre-stall and the improvement of post-stall performance were enhanced with larger amplitude of protuberance. Near-wall flow visualizations showed that the leading-edge protuberances worked in pairs at high angles of attack, producing different forms of streamwise vortices. An attached flow along some valley sections was observed, leading to a higher local lift coefficient at post-stall angles. The leading-edge protuberances were considered as sharing a similar mechanism as delta wings, increasing nonlinear lift at large angles of attack. The specific stall characteristics of this leading-edge modification could provide some guidelines for the design of some special hydrofoils or airfoils.
  • 关键词:Hydrofoil; stall; leading-edge protuberance; passive control; computational fluid dynamics
国家哲学社会科学文献中心版权所有