摘要:The solution of the energy equation of thermo-elasto-hydrodynamic analysis for bearings by the finite element method usually leads to convergence difficulties due to the presence of convection terms inherited from the Navier–Stokes equations. In this work, the numerical analysis is performed with finite element method universally by adopting the characteristic-based split method to solve the energy equation. Five case studies of fixed pad thrust bearings have been set up with different geometries, loads, and lubricants. The two-dimensional film pressure is obtained by solving the Reynolds equation with pre-defined axial load on the pad. The energy equation of the lubricant film and the heat transfer equation of the bearing pad are handled by characteristic-based split method and conventional finite element method in three-dimensional space, respectively. Hot oil carry-over effect and variable lubricant viscosity are considered in the simulations. The results of the temperature distributions in the lubricant film and the bearing pad are presented. The possible usability of characteristic-based split method for future thermo-elasto-hydrodynamic analysis is discussed.