摘要:In the environment of intelligent transportation systems, traffic condition data would have higher resolution in time and space, which is especially valuable for managing the interrupted traffic at signalized intersections. There exist a lot of algorithms for offset tuning, but few of them take the advantage of modern traffic detection methods such as probe vehicle data. This study proposes a method using probe trajectory data to optimize and adjust offsets in real time. The critical point, representing the changing vehicle dynamics, is first defined as the basis of this approach. Using the critical points related to different states of traffic conditions, such as free flow, queue formation, and dissipation, various traffic status parameters can be estimated, including actual travel speed, queue dissipation rate, and standing queue length. The offset can then be adjusted on a cycle-by-cycle basis. The performance of this approach is evaluated using a simulation network. The results show that the trajectory-based approach can reduce travel time of the coordinated traffic flow when compared with using well-defined offline offset.
关键词:Improving method; signalized intersections; offset tuning; probe trajectory data