摘要:The brushless DC motor experiences operating safety problems due to the deterioration of its components following long-term operations, which are easily overlooked. To resolve these problems, failure mode, effects, and criticality analysis is utilized to characterize potential hazards in the motors. Hilbert–Huang transform is then employed to obtain the frequency-domain energy values of the vibration signals, which is defined as characteristic values that represent the performance degradation state. Second, gray model is selected to analyze the frequency-domain energy values and establish differential equations to predict the future vibration status, thereby achieving the vibration-based fault prediction. Furthermore, a gray safety assessment model is proposed to implement the safety assessment for the motor. The fault prediction and gray safety assessment are carried out based on historical data obtained from the brushless DC motor vibration experiment. The accuracy level of the gray model predictions is classified as Wonderful, thereby demonstrating the efficiency of gray model for the fault prediction. In addition, as low as reasonably practicable law is chosen to classify risk levels and formulate safety strategies in accordance with the results of safety assessment. Finally, the proposed safety effects of the methods and strategies are evaluated for microscopic and macroscopic levels.
关键词:Brushless DC motor; vibration signal analysis; gray model; fault prediction; gray safety assessment model