首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Joint variable stiffness of musculoskeletal leg mechanism for quadruped robot
  • 本地全文:下载
  • 作者:Jingtao Lei ; Jianmin Zhu ; Ping Xie
  • 期刊名称:Advances in Mechanical Engineering
  • 印刷版ISSN:1687-8140
  • 电子版ISSN:1687-8140
  • 出版年度:2017
  • 卷号:9
  • 期号:4
  • DOI:10.1177/1687814017690342
  • 语种:English
  • 出版社:Sage Publications Ltd.
  • 摘要:When the quadruped robot is in locomotion such as jumping and running with higher speed, there is non-continuous contact force between the foot and the environment inevitably. In order to achieve the flexible force interaction of the bionic legs with the environment, it is necessary to analyze the joint angular stiffness of the bionic leg. In this article, based on the designing principles of the bionics, light-weighted, and flexible, a kind of musculoskeletal bionic leg mechanism driven by pneumatic artificial muscles is presented by inspiring from the biological cheetah anatomy and physiology muscle distribution. The kinematics of the bionic leg is analyzed to obtain the Jacobian matrix. In order to achieve high-speed jumping and soft landing of the bionic leg, a kind of foot stiffness model is presented by analyzing the foot elastic potential energy caused by the contact force. The mapping relationship between the joint stiffness matrix and the foot stiffness matrix is obtained by the Jacobian matrix. Then, the dynamics of the bionic leg is analyzed to determine the relationship between the joint angular stiffness and the pneumatic artificial muscle gas pressure. Finally, the experiment on controlling the pneumatic artificial muscles gas pressure for tracking the joint angular stiffness of the bionic leg is conducted. By regulating the pneumatic artificial muscle gas pressure, the needed pneumatic artificial muscle gas pressure that could meet the desired foot stiffness ellipse model can be determined. The study will pay a theoretical foundation for controlling the pneumatic artificial muscles to achieve the high-speed locomotion of the bionic leg.
  • 关键词:Musculoskeletal bionic leg; foot stiffness model; joint stiffness matrix; joint variable stiffness
国家哲学社会科学文献中心版权所有