摘要:In this article, we present an efficient method for solving nonlinear Fredholm integral equations of the second kind. The proposed method is based on the Galerkin method and transformations of shifted Chebyshev polynomials. This method is simple and computationally very attractive. Finally, illustrative examples and also the application of the proposed method to solve a functional differential equation are presented to show the validity and applicability of the technique.
关键词:Hammerstein equations; nonlinear Fredholm integral equation; shifted Chebyshev polynomials; Taylor expansion; Galerkin method