首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Sparse representation of salient regions for no-reference image quality assessment
  • 作者:Tianpeng Feng ; Dexiang Deng ; Jia Yan
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2016
  • 卷号:13
  • 期号:5
  • DOI:10.1177/1729881416669486
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:This paper introduces an efficient feature learning framework via sparse coding for no-reference image quality assessment. The important part of the proposed framework is based on sparse feature extraction from a sparse representation matrix, which is computed using a sparse coding algorithm. Image patches extracted from salient regions of unlabeled images are used to learn a dictionary of sparse coding. The 1-norm of the sparse representation is taken as a sparse penalty term in the process of learning the dictionary and computing the sparse representation. A feature detector adopts the 1-norm together with the max-pooling results of the sparse representation matrix as the output sparse features to obtain the objective quality scores. Sparse features of salient regions are evaluated using the LIVE, CSIQ and TID2013 databases, and result in good generalization ability, performing better than or on par with other image quality assessment algorithms.
  • 关键词:ℓ1-norm; no-reference image quality assessment; sparse coding; sparse representation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有