首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Bidirectional scale-invariant feature transform feature matching algorithms based on priority k -d tree search
  • 作者:XiangShao Liu ; Shangbo Zhou ; Hua Li
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2017
  • 卷号:14
  • 期号:1
  • DOI:10.1177/1729881416682700
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:In this article, a bidirectional feature matching algorithm and two extended algorithms based on the priority k-d tree search are presented for the image registration using scale-invariant feature transform features. When matching precision of image registration is below 50%, the discarding wrong match performance of many robust fitting methods like Random Sample Consensus (RANSAC) is poor. Therefore, improving matching precision is a significant work. Generally, a feature matching algorithm is used once in the image registration system. We propose a bidirectional algorithm that utilizes the priority k-d tree search twice to improve matching precision. There are two key steps in the bidirectional algorithm. According to the case of adopting the ratio restriction of distances in the two key steps, we further propose two extended bidirectional algorithms. Experiments demonstrate that there are some special properties of these three bidirectional algorithms, and the two extended algorithms can achieve higher precisions than previous feature matching algorithms.
  • 关键词:Bidirectional matching; priority k-d tree search; SIFT; matching precision; recall rate
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有