首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Random sampling and model competition for guaranteed multiple consensus sets estimation
  • 作者:Jing Li ; Tao Yang ; Jingyi Yu
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2017
  • 卷号:14
  • 期号:1
  • DOI:10.1177/1729881416685673
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:Robust extraction of consensus sets from noisy data is a fundamental problem in robot vision. Existing multimodel estimation algorithms have shown success on large consensus sets estimations. One remaining challenge is to extract small consensus sets in cluttered multimodel data set. In this article, we present an effective multimodel extraction method to solve this challenge. Our technique is based on smallest consensus set random sampling, which we prove can guarantee to extract all consensus sets larger than the smallest set from input data. We then develop an efficient model competition scheme that iteratively removes redundant and incorrect model samplings. Extensive experiments on both synthetic data and real data with high percentage of outliers and multimodel intersections demonstrate the superiority of our method.
  • 关键词:Multiple model estimation; model fitting; robust estimation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有