期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:19
页码:8623-8626
DOI:10.1073/pnas.1001299107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Computational studies of the relationships between protein sequence, structure, and folding have traditionally relied on purely local sequence representations. Here we show that global representations, on the basis of parameters that encode information about complete sequences, contain otherwise inaccessible information about the organization of sequences. By studying the spectral properties of these parameters, we demonstrate that amino acid physical properties fall into two distinct classes. One class is comprised of properties that favor sequentially localized interaction clusters. The other class is comprised of properties that favor globally distributed interactions. This observation provides a bridge between two classic models of protein folding--the collapse model and the nucleation model--and provides a basis for understanding how any degree of intermediacy between these two extremes can occur.