首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana
  • 本地全文:下载
  • 作者:Noriyuki Suetsugu ; Noboru Yamada ; Takatoshi Kagawa
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:19
  • 页码:8860-8865
  • DOI:10.1073/pnas.0912773107
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for cp-actin filament accumulation. However, other factors involved in cp-actin filament regulation during chloroplast movement remain to be determined. Here, we report that two kinesin-like proteins, KAC1 and KAC2, are essential for chloroplasts to move and anchor to the plasma membrane. A kac1 mutant showed severely impaired chloroplast accumulation and slow avoidance movement. A kac1kac2 double mutant completely lacked chloroplast photorelocation movement and showed detachment of chloroplasts from the plasma membrane. KAC motor domains are similar to those of the kinesin-14 subfamily (such as Ncd and Kar3) but do not have detectable microtubule-binding activity. The C-terminal domain of KAC1 could interact with F-actin in vitro. Instead of regulating microtubules, KAC proteins mediate chloroplast movement via cp-actin filaments. We conclude that plants have evolved a unique mechanism to regulate actin-based organelle movement using kinesin-like proteins.
  • 关键词:cp-actin ; blue light ; organelle movement ; phototropin
国家哲学社会科学文献中心版权所有