首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth
  • 本地全文:下载
  • 作者:Brion W. Murray ; Chuangxing Guo ; Joseph Piraino
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:20
  • 页码:9446-9451
  • DOI:10.1073/pnas.0911863107
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Despite abundant evidence that aberrant Rho-family GTPase activation contributes to most steps of cancer initiation and progression, there is a dearth of inhibitors of their effectors (e.g., p21-activated kinases). Through high-throughput screening and structure-based design, we identify PF-3758309, a potent (Kd = 2.7 nM), ATP-competitive, pyrrolopyrazole inhibitor of PAK4. In cells, PF-3758309 inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC50 = 1.3 nM) and anchorage-independent growth of a panel of tumor cell lines (IC50 = 4.7 {+/-} 3 nM). The molecular underpinnings of PF-3758309 biological effects were characterized using an integration of traditional and emerging technologies. Crystallographic characterization of the PF-3758309/PAK4 complex defined determinants of potency and kinase selectivity. Global high-content cellular analysis confirms that PF-3758309 modulates known PAK4-dependent signaling nodes and identifies unexpected links to additional pathways (e.g., p53). In tumor models, PF-3758309 inhibits PAK4-dependent pathways in proteomic studies and regulates functional activities related to cell proliferation and survival. PF-3758309 blocks the growth of multiple human tumor xenografts, with a plasma EC50 value of 0.4 nM in the most sensitive model. This study defines PAK4-related pathways, provides additional support for PAK4 as a therapeutic target with a unique combination of functions (apoptotic, cytoskeletal, cell-cycle), and identifies a potent, orally available small-molecule PAK inhibitor with significant promise for the treatment of human cancers.
  • 关键词:chemical biology ; high-content screening ; p53 ; signaling signature
国家哲学社会科学文献中心版权所有