期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:24
页码:10815-10820
DOI:10.1073/pnas.0912671107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Directed networks are ubiquitous and are necessary to represent complex systems with asymmetric interactions--from food webs to the World Wide Web. Despite the importance of edge direction for detecting local and community structure, it has been disregarded in studying a basic type of global diversity in networks: the tendency of nodes with similar numbers of edges to connect. This tendency, called assortativity, affects crucial structural and dynamic properties of real-world networks, such as error tolerance or epidemic spreading. Here we demonstrate that edge direction has profound effects on assortativity. We define a set of four directed assortativity measures and assign statistical significance by comparison to randomized networks. We apply these measures to three network classes--online/social networks, food webs, and word-adjacency networks. Our measures (i) reveal patterns common to each class, (ii) separate networks that have been previously classified together, and (iii) expose limitations of several existing theoretical models. We reject the standard classification of directed networks as purely assortative or disassortative. Many display a class-specific mixture, likely reflecting functional or historical constraints, contingencies, and forces guiding the system's evolution.