期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:26
页码:11751-11756
DOI:10.1073/pnas.1004255107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pKa = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756.