期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:26
页码:11999-12004
DOI:10.1073/pnas.0913004107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:How persistent synaptic and spine modification is achieved is essential to our understanding of developmental refinement of neural circuitry and formation of memory. Within a short period after their induction, both types of modifications can either be stabilized or reversed, but how this reversibility is controlled is largely unknown. We have shown previously that AMPA receptors (AMPARs) are delivered to perisynaptic regions after the induction of long-term potentiation (LTP) but are absent from perisynaptic regions after the full expression of LTP. Here, we report that perisynaptic AMPARs are GluR2-lacking and they translocate to synapses in a protein kinase C (PKC)-dependent manner. Once entering synapses, these AMPARs quickly switch to GluR2-containing in an activity-dependent manner. Absence of postinduction activity or blocking interactions between GluR2 and NSF, or GluR2 and GRIP/PICK1 results in LTP mediated by GluR2-lacking AMPARs. However, these synaptic GluR2-lacking AMPARs are not sufficient to allow reversibility of LTP. On the other hand, postsynaptic inhibition of PKC activity holds AMPARs at perisynaptic regions. As long as perisynaptic AMPARs are present, both LTP and spine expansion remain labile: they can be reverted to the baseline state together with removal of perisynaptic AMPARs, or they can enter a stabilized state of persistent increase together with synaptic incorporation of perisynaptic AMPARs. Thus, perisynaptic GluR2-lacking AMPARs play a critical role in controlling the reversibility of both synaptic and spine modifications.