首页    期刊浏览 2024年09月06日 星期五
登录注册

文章基本信息

  • 标题:Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape
  • 本地全文:下载
  • 作者:Amber L. Jolly ; Hwajin Kim ; Divya Srinivasan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:27
  • 页码:12151-12156
  • DOI:10.1073/pnas.1004736107
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Microtubules are typically observed to buckle and loop during interphase in cultured cells by an unknown mechanism. We show that lateral microtubule movement and looping is a result of microtubules sliding against one another in interphase Drosophila S2 cells. RNAi of the kinesin-1 heavy chain (KHC), but not dynein or the kinesin-1 light chain, eliminates these movements. KHC-dependent microtubule sliding powers the formation of cellular processes filled with parallel microtubule bundles. The growth of these cellular processes is independent of the actin cytoskeleton. We further observe cytoplasmic microtubule sliding in Xenopus and Ptk2 cells, and show that antibody inhibition of KHC in mammalian cells prevents sliding. We therefore propose that, in addition to its well established role in organelle transport, an important universal function of kinesin-1 is to mediate cytoplasmic microtubule-microtubule sliding. This provides the cell with a dedicated mechanism to transport long and short microtubule filaments and drive changes in cell shape.
  • 关键词:cytoskeleton ; motor proteins ; dynein ; cell morphology ; Drosophila
国家哲学社会科学文献中心版权所有