首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Evidence of Coulomb blockade behavior in a quasi-zero-dimensional quantum well on TiO2 surface
  • 本地全文:下载
  • 作者:Vincent Meunier ; M. H. Pan ; F. Moreau
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:34
  • 页码:14968-14972
  • DOI:10.1073/pnas.1009310107
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Line defects on the surface of rutile TiO2(110) form in pairs separated by 1.2 nm creating a quantum well. The well is effectively closed by the presence of two charged structures at both ends separated by a distance in the 10-20 nm range. As expected for quantum confinement a long period oscillatory feature of the local density of states is observed and attributed to the formation of discrete quantum states inside the system. It is at first glance surprising that the lowest energy quantum state of the well can be observed at room temperature. The properties of the quantum state cannot be explained in an independent-electron, band-like theory. Instead, electron-electron correlation must be included to give a satisfactory picture of the spatial distribution of the charge density. Theory predicts charging energies of 1.30 eV and 1.14 eV for quantum well lengths of 14 nm and 16 nm, respectively, in good agreement with a classical calculation and the size dependence of the capacitance. This observation opens up the possibility of experimentally imaging the transition from a Coulomb blockade localized in a zero-dimensional system to an independent-particle or band-like behavior in an extended one-dimensional system.
  • 关键词:capacitor ; Coulomb blockage ; quantum confinement ; titanium dioxide ; scanning tunneling microscopy
国家哲学社会科学文献中心版权所有