期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:34
页码:15016-15021
DOI:10.1073/pnas.1009327107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Plants produce a variety of proteinase inhibitors (PIs) that have a major function in defense against insect herbivores. In turn, insects have developed strategies to minimize the effect of dietary PIs on digestion. We have discovered that Helicoverpa larvae that survive consumption of a multidomain serine PI from Nicotiana alata (NaPI) contain high levels of a chymotrypsin that is not inhibited by NaPI. Here we describe the isolation of this NaPI-resistant chymotrypsin and an NaPI-susceptible chymotrypsin from Helicoverpa larvae, together with their corresponding cDNAs. We investigated the mechanism of resistance by mutating selected positions of the NaPI-susceptible chymotrypsin using the corresponding amino acids of the NaPI-resistant chymotrypsin. Four critical residues that conferred resistance to NaPI were identified. Molecular modeling revealed that a Phe[->]Leu substitution at position 37 in the chymotrypsin results in the loss of important binding contacts with NaPI. Identification of the molecular mechanisms that contribute to PI resistance in insect digestive proteases will enable us to develop better inhibitors for the control of lepidopteran species that are major agricultural pests worldwide.