期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:5
页码:2325-2330
DOI:10.1073/pnas.0910059107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Task2 K+ channel expression in the central nervous system is surprisingly restricted to a few brainstem nuclei, including the retrotrapezoid (RTN) region. All Task2-positive RTN neurons were lost in mice bearing a Phox2b mutation that causes the human congenital central hypoventilation syndrome. In plethysmography, Task2-/- mice showed disturbed chemosensory function with hypersensitivity to low CO2 concentrations, leading to hyperventilation. Task2 probably is needed to stabilize the membrane potential of chemoreceptive cells. In addition, Task2-/- mice lost the long-term hypoxia-induced respiratory decrease whereas the acute carotid-body-mediated increase was maintained. The lack of anoxia-induced respiratory depression in the isolated brainstem-spinal cord preparation suggested a central origin of the phenotype. Task2 activation by reactive oxygen species generated during hypoxia could silence RTN neurons, thus contributing to respiratory depression. These data identify Task2 as a determinant of central O2 chemoreception and demonstrate that this phenomenon is due to the activity of a small number of neurons located at the ventral medullary surface.