期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2010
卷号:107
期号:5
页码:2349-2354
DOI:10.1073/pnas.0904739107
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Plant immunity can be induced by two major classes of pathogen-associated molecules. Pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) are conserved molecular components of microbes that serve as "non-self" features to induce PAMP-triggered immunity (PTI). Pathogen effector proteins used to promote virulence can also be recognized as "non-self" features or induce a "modified-self" state that can induce effector-triggered immunity (ETI). The Arabidopsis protein RIN4 plays an important role in both branches of plant immunity. Three unrelated type III secretion effector (TTSE) proteins from the phytopathogen Pseudomonas syringae, AvrRpm1, AvrRpt2, and AvrB, target RIN4, resulting in ETI that effectively restricts pathogen growth. However, no pathogenic advantage has been demonstrated for RIN4 manipulation by these TTSEs. Here, we show that the TTSE HopF2 Pto also targets Arabidopsis RIN4. Transgenic plants conditionally expressing HopF2 Pto were compromised for AvrRpt2-induced RIN4 modification and associated ETI. HopF2 Pto interfered with AvrRpt2-induced RIN4 modification in vitro but not with AvrRpt2 activation, suggestive of RIN4 targeting by HopF2 Pto . In support of this hypothesis, HopF2 Pto interacted with RIN4 in vitro and in vivo. Unlike AvrRpm1, AvrRpt2, and AvrB, HopF2 Pto did not induce ETI and instead promoted P. syringae growth in Arabidopsis. This virulence activity was not observed in plants genetically lacking RIN4. These data provide evidence that RIN4 is a major virulence target of HopF2 Pto and that a pathogenic advantage can be conveyed by TTSEs that target RIN4.