首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury
  • 本地全文:下载
  • 作者:Hyunjung Lee ; Robert J. McKeon ; Ravi V. Bellamkonda
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:8
  • 页码:3340-3345
  • DOI:10.1073/pnas.0905437106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 {degrees}C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 {degrees}C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit-positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.
  • 关键词:chondroitin sulfate ; glial scar ; glycosaminoglycans ; hydrogel
国家哲学社会科学文献中心版权所有