首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Markov random fields reveal an N-terminal double beta-propeller motif as part of a bacterial hybrid two-component sensor system
  • 本地全文:下载
  • 作者:Matt Menke ; Bonnie Berger ; Lenore Cowen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2010
  • 卷号:107
  • 期号:9
  • 页码:4069-4074
  • DOI:10.1073/pnas.0909950107
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The recent explosion in newly sequenced bacterial genomes is outpacing the capacity of researchers to try to assign functional annotation to all the new proteins. Hence, computational methods that can help predict structural motifs provide increasingly important clues in helping to determine how these proteins might function. We introduce a Markov Random Field approach tailored for recognizing proteins that fold into mainly {beta}-structural motifs, and apply it to build recognizers for the {beta}-propeller shapes. As an application, we identify a potential class of hybrid two-component sensor proteins, that we predict contain a double-propeller domain.
  • 关键词:remote homology detection ; motif recognition ; structure ; signal transduction ; histidine kinase
国家哲学社会科学文献中心版权所有