期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:15
页码:E3041-E3050
DOI:10.1073/pnas.1618008114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p -carboxy-methyl- l -phenylalanine ( p CMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around p CMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.
关键词:cytochrome c ; mitochondrial dysfunction ; nuclear magnetic resonance ; phosphorylation ; respiratory supercomplexes