期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:24
页码:13785-13790
DOI:10.1073/pnas.2333109100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Monovalent-cation-activated enzymes are abundantly represented in plants and in the animal world. Most of these enzymes are specifically activated by K+, whereas a few of them show preferential activation by Na+. The monovalent cation specificity of these enzymes remains elusive in molecular terms and has not been reengineered by site-directed mutagenesis. Here we demonstrate that thrombin, a Na+-activated allosteric enzyme involved in vertebrate blood clotting, can be converted into a K+-specific enzyme by redesigning a loop that shapes the entrance to the cation-binding site. The conversion, however, does not result into a K+-activated enzyme.