期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2003
卷号:100
期号:24
页码:13922-13927
DOI:10.1073/pnas.2036378100
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We combine free-energy calculations and molecular dynamics to elucidate a mechanism for DNA base-pair binding and unbinding in atomic detail. Specifically, transition-path sampling is used to overcome computational limitations associated with conventional techniques to harvest many trajectories for the flipping of a terminal cytosine in a 3-bp oligomer in explicit water. Comparison with free-energy projections obtained with umbrella sampling reveals four coordinates that separate true dynamic transition states from stable reactant and product states. Unbinding proceeds via two qualitatively different pathways: one in which the flipping base breaks its intramolecular hydrogen bonds before it unstacks and another in which it ruptures both sets of interactions simultaneously. Both on- and off-pathway intermediates are observed. The relation of the results to coarse-grained models for DNA-based biosensors is discussed.