期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2005
卷号:102
期号:31
页码:11088-11093
DOI:10.1073/pnas.0504806102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Synaptic organizing molecules and neurotransmission regulate synapse development. Here, we use the skeletal neuromuscular junction to assess the interdependence of effects evoked by an essential synaptic organizing protein, agrin, and the neuromuscular transmitter, acetylcholine (ACh). Mice lacking agrin fail to maintain neuromuscular junctions, whereas neuromuscular synapses differentiate extensively in the absence of ACh. We now demonstrate that agrin's action in vivo depends critically on cholinergic neurotransmission. Using double-mutant mice, we show that synapses do form in the absence of agrin provided that ACh is also absent. We provide evidence that ACh destabilizes nascent postsynaptic sites, and that one major physiological role of agrin is to counteract this "antisynaptogenic" influence. Similar interactions between neurotransmitters and synaptic organizing molecules may operate at synapses in the central nervous system.