首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis
  • 本地全文:下载
  • 作者:Robert E. Kopp ; Joseph L. Kirschvink ; Isaac A. Hilburn
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2005
  • 卷号:102
  • 期号:32
  • 页码:11131-11136
  • DOI:10.1073/pnas.0504878102
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Although biomarker, trace element, and isotopic evidence have been used to claim that oxygenic photosynthesis evolved by 2.8 giga-annum before present (Ga) and perhaps as early as 3.7 Ga, a skeptical examination raises considerable doubt about the presence of oxygen producers at these times. Geological features suggestive of oxygen, such as red beds, lateritic paleosols, and the return of sedimentary sulfate deposits after a {approx}900-million year hiatus, occur shortly before the {approx}2.3-2.2 Ga Makganyene "snowball Earth" (global glaciation). The massive deposition of Mn, which has a high redox potential, practically requires the presence of environmental oxygen after the snowball. New age constraints from the Transvaal Supergroup of South Africa suggest that all three glaciations in the Huronian Supergroup of Canada predate the Snowball event. A simple cyanobacterial growth model incorporating the range of C, Fe, and P fluxes expected during a partial glaciation in an anoxic world with high-Fe oceans indicates that oxygenic photosynthesis could have destroyed a methane greenhouse and triggered a snowball event on timescales as short as 1 million years. As the geological evidence requiring oxygen does not appear during the Pongola glaciation at 2.9 Ga or during the Huronian glaciations, we argue that oxygenic cyanobacteria evolved and radiated shortly before the Makganyene snowball.
  • 关键词:oxygen ; Makganyene glaciation ; Huronian glaciations ; cyanobacteria
国家哲学社会科学文献中心版权所有