期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2006
卷号:103
期号:31
页码:11637-11641
DOI:10.1073/pnas.0600750103
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Evolutionists widely acknowledge that regulatory genetic changes are of paramount importance for morphological and genomic evolution. Nevertheless, mechanistic complexity and a paucity of data from nonmodel organisms have prevented testing and quantifying universal hypotheses about the macroevolution of gene regulatory mechanisms. Here, we use a phylogenetic approach to provide a quantitative demonstration of a previously hypothesized trend, whereby the evolutionary rate of repression or loss of gene expression regions is significantly higher than the rate of activation or gain. Such a trend is expected based on case studies in regulatory evolution and under models of molecular evolution where duplicated genes lose duplicated expression patterns in a complementary fashion. The trend is important because repression of gene expression is a hypothesized mechanism for the origin of evolutionarily novel morphologies through specialization.