期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2008
卷号:105
期号:41
页码:15908-15913
DOI:10.1073/pnas.0808360105
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Enzyme replacement therapy for lysosomal storage diseases is currently based on endocytosis of lysosomal enzymes via the mannose or mannose 6-phosphate receptors. We are developing a technology for endocytosis of lysosomal enzymes that depends on generic, chemically conjugated reagents. These reagents are aptamers (single-stranded nucleic acid molecules) selected to bind to the extracellular domain of the mouse transferrin receptor. After selection, an RNA aptamer and a DNA aptamer were modified with biotin and linked to dye-labeled streptavidin for detection by confocal microscopy. Aptamer-streptavidin conjugates showed saturable uptake into mouse fibroblasts (Ltk- cells), which could be inhibited by an excess of free aptamer but not by tRNA, calf thymus DNA, or transferrin. The RNA aptamer-streptavidin conjugate was mouse-specific, as human cells (293T) did not take it up unless first transfected with the mouse transferrin receptor. Some streptavidin separated from the recycling pathway of transferrin and colocalized with lysosomes. After characterization in the model system, the DNA aptamer was conjugated to a lysosomal enzyme, {alpha}-L-iduronidase, from which mannose 6-phosphate had been removed. The aptamer had been modified by attachment of terminal glycerol for oxidation by periodate and reaction of the resulting aldehyde with amino groups on the protein. Dephospho-{alpha}-L-iduronidase-aptamer conjugate was taken up in saturable manner by {alpha}-L-iduronidase-deficient mouse fibroblasts, with half-maximal uptake estimated as 1.6 nM. Endocytosed enzyme-aptamer conjugate corrected glycosaminoglycan accumulation, indicating that it reached lysosomes and was functional in those organelles. Both uptake and correction were inhibited by unconjugated aptamer, confirming the role of the aptamer in receptor-mediated endocytosis.