首页    期刊浏览 2024年07月16日 星期二
登录注册

文章基本信息

  • 标题:Condensation of FtsZ filaments can drive bacterial cell division
  • 本地全文:下载
  • 作者:Ganhui Lan ; Brian R. Daniels ; Terrence M. Dobrowsky
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:1
  • 页码:121-126
  • DOI:10.1073/pnas.0807963106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Forces are important in biological systems for accomplishing key cell functions, such as motility, organelle transport, and cell division. Currently, known force generation mechanisms typically involve motor proteins. In bacterial cells, no known motor proteins are involved in cell division. Instead, a division ring (Z-ring) consists of mostly FtsZ, FtsA, and ZipA is used to exerting a contractile force. The mechanism of force generation in bacterial cell division is unknown. Using computational modeling, we show that Z-ring formation results from the colocalization of FtsZ and FtsA mediated by the favorable alignment of FtsZ polymers. The model predicts that the Z-ring undergoes a condensation transition from a low-density state to a high-density state and generates a sufficient contractile force to achieve division. FtsZ GTP hydrolysis facilitates monomer turnover during the condensation transition, but does not directly generate forces. In vivo fluorescence measurements show that FtsZ density increases during division, in accord with model results. The mechanism is akin to van der Waals picture of gas-liquid condensation, and shows that organisms can exploit microphase transitions to generate mechanical forces.
  • 关键词:force generation ; modeling ; Z-ring
国家哲学社会科学文献中心版权所有