期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2009
卷号:106
期号:36
页码:15320-15325
DOI:10.1073/pnas.0904614106
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Red blood cells are amazingly deformable structures able to recover their initial shape even after large deformations as when passing through tight blood capillaries. The reason for this exceptional property is found in the composition of the membrane and the membrane-cytoskeleton interaction. We investigate the mechanics and the dynamics of RBCs by a unique noninvasive technique, using weak optical tweezers to measure membrane fluctuation amplitudes with {micro}s temporal and sub nm spatial resolution. This enhanced edge detection method allows to span over >4 orders of magnitude in frequency. Hence, we can simultaneously measure red blood cell membrane mechanical properties such as bending modulus {kappa} = 2.8 {+/-} 0.3 x 10-19J = 67.6 {+/-} 7.2 kBT, tension {sigma} = 6.5 {+/-} 2.1 x 10-7N/m, and an effective viscosity {eta}eff = 81 {+/-} 3.7 x 10-3 Pa s that suggests unknown dissipative processes. We furthermore show that cell mechanics highly depends on the membrane-spectrin interaction mediated by the phosphorylation of the interconnection protein 4.1R. Inhibition and activation of this phosphorylation significantly affects tension and effective viscosity. Our results show that on short time scales (slower than 100 ms) the membrane fluctuates as in thermodynamic equilibrium. At time scales longer than 100 ms, the equilibrium description breaks down and fluctuation amplitudes are higher by 40% than predicted by the membrane equilibrium theory. Possible explanations for this discrepancy are influences of the spectrin that is not included in the membrane theory or nonequilibrium fluctuations that can be accounted for by defining a nonthermal effective energy of up to Eeff = 1.4 {+/-} 0.1 kBT, that corresponds to an actively increased effective temperature.