期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2011
卷号:108
期号:11
页码:4471-4476
DOI:10.1073/pnas.1012456108
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Narcolepsy is caused by a loss of orexin/hypocretin signaling, resulting in chronic sleepiness, fragmented non-rapid eye movement sleep, and cataplexy. To identify the neuronal circuits underlying narcolepsy, we produced a mouse model in which a loxP-flanked gene cassette disrupts production of the orexin receptor type 2 (OX2R; also known as HCRTR2), but normal OX2R expression can be restored by Cre recombinase. Mice lacking OX2R signaling had poor maintenance of wakefulness indicative of sleepiness and fragmented sleep and lacked any electrophysiological response to orexin-A in the wake-promoting neurons of the tuberomammillary nucleus. These defects were completely recovered by crossing them with mice that express Cre in the female germline, thus globally deleting the transcription-disrupter cassette. Then, by using an adeno-associated viral vector coding for Cre recombinase, we found that focal restoration of OX2R in neurons of the tuberomammillary nucleus and adjacent parts of the posterior hypothalamus completely rescued the sleepiness of these mice, but their fragmented sleep was unimproved. These observations demonstrate that the tuberomammillary region plays an essential role in the wake-promoting effects of orexins, but orexins must stabilize sleep through other targets.
关键词:histamine ; Cre-loxP ; G protein-coupled receptors ; arousal