期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2011
卷号:108
期号:29
页码:12137-12142
DOI:10.1073/pnas.1103060108
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Inhibitors of the serotonin transporter (SERT) and norepinephrine transporter (NET) are widely used in the treatment of major depressive disorder. Although SERT/NET selectivity is a key determinant for the therapeutic properties of these drugs, the molecular determinants defining SERT/NET selectivity are poorly understood. In this study, the structural basis for selectivity of the SERT selective inhibitor citalopram and the structurally closely related NET selective inhibitor talopram is delineated. A systematic structure-activity relationship study allowed identification of the substituents that control activity and selectivity toward SERT and NET and revealed a common pattern showing that SERT and NET have opposite preference for the stereochemical configuration of these inhibitors. Mutational analysis of nonconserved SERT/NET residues within the central substrate binding site was performed to determine the molecular basis for inhibitor selectivity. Changing only five residues in NET to the complementary residues in SERT transferred a SERT-like affinity profile for R- and S-citalopram into NET, showing that the selectivity of these compounds is determined by amino acid differences in the central binding site of the transporters. In contrast, the activity of R- and S-talopram was largely unaffected by any mutations within the central substrate binding site of SERT and NET and in the outer vestibule of NET, suggesting that citalopram and talopram bind to distinct sites on SERT and NET. Together, these findings provide important insight into the molecular basis for SERT/NET selectivity of antidepressants, which can be used to guide rational development of unique transporter inhibitors with fine-tuned transporter selectivity.