首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium)
  • 本地全文:下载
  • 作者:Ying Bao ; Guanjing Hu ; Lex E. Flagel
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2011
  • 卷号:108
  • 期号:52
  • 页码:21152-21157
  • DOI:10.1073/pnas.1115926109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Cotton is remarkable among our major crops in that four species were independently domesticated, two allopolyploids and two diploids. In each case thousands of years of human selection transformed sparsely flowering, perennial shrubs into highly productive crops with seeds bearing the vastly elongated and abundant single-celled hairs that comprise modern cotton fiber. The genetic underpinnings of these transformations are largely unknown, but comparative gene expression profiling experiments have demonstrated up-regulation of profilin accompanying domestication in all three species for which wild forms are known. Profilins are actin monomer binding proteins that are important in cytoskeletal dynamics and in cotton fiber elongation. We show that Gossypium diploids contain six profilin genes (GPRF1-GPRF6), located on four different chromosomes (eight chromosomes in the allopolyploid). All but one profilin (GPRF6) are expressed during cotton fiber development, and both homeologs of GPRF1-GPRF5 are expressed in fibers of the allopolyploids. Remarkably, quantitative RT-PCR and RNAseq data demonstrate that GPRF1-GPRF5 are all up-regulated, in parallel, in the three independently domesticated cottons in comparison with their wild counterparts. This result was additionally supported by iTRAQ proteomic data. In the allopolyploids, there This usage of novel should be fine, since it refers to a novel evolutionary process, not a novel discovery has been novel recruitment of the sixth profilin gene (GPRF6) as a result of domestication. This parallel up-regulation of an entire gene family in multiple species in response to strong directional selection is without precedent and suggests unwitting selection on one or more upstream transcription factors or other proteins that coordinately exercise control over profilin expression.
  • 关键词:polyploidy ; crop evolution ; fiber ; directional selection
国家哲学社会科学文献中心版权所有