首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease
  • 本地全文:下载
  • 作者:Jie Lu ; Chunzhang Yang ; Masako Chen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2011
  • 卷号:108
  • 期号:52
  • 页码:21200-21205
  • DOI:10.1073/pnas.1119181109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Gaucher disease (GD) is caused by a spectrum of genetic mutations within the gene encoding the lysosomal enzyme glucocerebrosidase (GCase). These mutations often lead to misfolded proteins that are recognized by the unfolded protein response system and are degraded through the ubiquitin-proteasome pathway. Modulating this pathway with histone deacetylase inhibitors (HDACis) has been shown to improve protein stability in other disease settings. To identify the mechanisms involved in the regulation of GCase and determine the effects of HDACis on protein stability, we investigated the most prevalent mutations for nonneuronopathic (N370S) and neuronopathic (L444P) GD in cultured fibroblasts derived from GD patients and HeLa cells transfected with these mutations. The half-lives of mutant GCase proteins correspond to decreases in protein levels and enzymatic activity. GCase was found to bind to Hsp70, which directed the protein to TCP1 for proper folding, and to Hsp90, which directed the protein to the ubiquitin-proteasome pathway. Using a known HDACi (SAHA) and a unique small-molecule HDACi (LB-205), GCase levels increased rescuing enzymatic activity in mutant cells. The increase in the quantity of protein can be attributed to increases in protein half-life that correspond primarily with a decrease in degradation rather than an increase in chaperoned folding. HDACis reduce binding to Hsp90 and prevent subsequent ubiquitination and proteasomal degradation without affecting binding to Hsp70 or TCP1. These findings provide insight into the pathogenesis of GD and indicate a potent therapeutic potential of HDAC inhibitors for the treatment of GD and other human protein misfolding disorders.
国家哲学社会科学文献中心版权所有