首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain
  • 本地全文:下载
  • 作者:Ping Li ; Julia J. Wind ; Xiaoliang Shi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2011
  • 卷号:108
  • 期号:8
  • 页码:3436-3441
  • DOI:10.1073/pnas.1018665108
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In living organisms sugars not only provide energy and carbon skeletons but also act as evolutionarily conserved signaling molecules. The three major soluble sugars in plants are sucrose, glucose, and fructose. Information on plant glucose and sucrose signaling is available, but to date no fructose-specific signaling pathway has been reported. In this study, sugar repression of seedling development was used to study fructose sensitivity in the Landsberg erecta (Ler)/Cape Verde Islands (Cvi) recombinant inbred line population, and eight fructose-sensing quantitative trait loci (QTLs) (FSQ1-8) were mapped. Among them, FSQ6 was confirmed to be a fructose-specific QTL by analyzing near-isogenic lines in which Cvi genomic fragments were introgressed in the Ler background. These results indicate the existence of a fructose-specific signaling pathway in Arabidopsis. Further analysis demonstrated that the FSQ6-associated fructose-signaling pathway functions independently of the hexokinase1 (HXK1) glucose sensor. Remarkably, fructose-specific FSQ6 downstream signaling interacts with abscisic acid (ABA)- and ethylene-signaling pathways, similar to HXK1-dependent glucose signaling. The Cvi allele of FSQ6 acts as a suppressor of fructose signaling. The FSQ6 gene was identified using map-based cloning approach, and FSQ6 was shown to encode the transcription factor gene Arabidopsis NAC (petunia No apical meristem and Arabidopsis transcription activation factor 1, 2 and Cup-shaped cotyledon 2) domain containing protein 89 (ANAC089). The Cvi allele of FSQ6/ANAC089 is a gain-of-function allele caused by a premature stop in the third exon of the gene. The truncated Cvi FSQ6/ANAC089 protein lacks a membrane association domain that is present in ANAC089 proteins from other Arabidopsis accessions. As a result, Cvi FSQ6/ANAC089 is constitutively active as a transcription factor in the nucleus.
  • 关键词:sugar signaling ; natural variation ; fructose quantitative trait locus ; map based cloning
国家哲学社会科学文献中心版权所有